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The Green’s function Monte Carlo method is generalized to treat quantum systems at 
non-zero temperature. The algorithm that is developed absolutely requires importance 
sampling to make it feasible. The nature of the importance sampling transformation needed 
for an efficient algorithm is discussed in theory and practice. As a demonstration of the 
principles, we carry out a calculation of the two body contribution to the radial distribu- 
tion function and the second virial coefficient of a hard sphere fluid. Accurate numerical 
results are obtained. It is also shown how improvement in the structure of the importance 
function can lead to dramatic improvements in computational efficiency. A method is 
described, and successfully applied, whereby an importance function may be determined 
in large part during the Monte Carlo, rather than a priori. Finally, we conjecture that im- 
portance sampling can also be applied to the sums over permutations for treating boson 
or fermion systems. 

INTRODUCTION 

The study of quantum fluids and crystals by Monte Carlo techniques has proved 
most valuable. Either for direct comparison with experiment or else in the elucidation 
of the properties of models, such investigations have contributed [l] to the theory of 
liquid and crystal phases of helium, hydrogen and deuterium, and of nuclear and 
neutron matter. Unfortunately practical methods exist only for the study of ground 
state problems. In most applications, systems at higher temperatures than zero arc 
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most interesting. Clearly only such states are experimentally accessible. In this paper 
we investigate the applicability to non-zero temperatures of the Green’s function 
Monte Carlo method [2, 31 (GFMC) which has already been used for ground state 
problems. It will be demonstrated that GFMC is applicable in principle at all tempera- 
tures and that it can give accurate numerical results for the two-body problem 
providing that appropriate importance sampling is used. 

The density matrix which describes equilibrium properties of quantum systems at 
finite temperatures is the solution of the Bloch equation [4]. To find a Monte Carlo 
technique suitable for integrating this equation, we note that the density matrix is 
the Green’s function for the operator H + a/@. The Green’s function is sampled in a 
random walk so that the weight associated with the sampled points is proportional 
to the density matrix and from the density matrix the equilibrium properties of the 
system may be determined. Experience with ground state calculations [3] indicates 
that the calculation is impossible for large systems without the introduction of 
importance sampling into the Monte Carlo algorithm. Modification of the random 
walk by means of an importance function accelerates the computation and reduces 
the variance of the answer. Such importance sampling is also essential in the finite 
temperature problem discussed in this paper. 

It is of course possible to study finite temperature systems using a path integral 
formulation [5]. To evaluate a diffusion process by path integrals, a truncated Wiener 
path is constructed which starts at some configuration of the system, R and ends at R 
within a specified time. The presence of hard sphere or other potentials complicates 
the efficient construction of paths which avoid strongly repulsive potential regions 
and necessitates some form of biasing. We claim that an intelligent importance 
sampling scheme is also essential for the treatment of permutations. 

As a demonstration of the theory the Green’s function Monte Carlo method is 
applied to the diffusion of two indistinguishable spheres which interact by a hard 
sphere potential. In the course of defining the computational problem, it becomes 
clear that importance sampling is imperative for the variance to exist. The method- 
ology used is essentially that described by Kalos, Levesque and Verlet (KLV) [3] 
pertaining to finite temperatures. Through the Monte Carlo calculation the radial 
distribution function of hard spheres and the direct and exchange second virial 
coefficients are determined and compared with previously obtained numerical estimates 
of these quantities. The KLV method is found to work well even with a poor choice of 
the importance function in the importance sampling and the efficiency of the Monte 
Carlo calculation increases when a better importance function is used. It is anticipated 
that the method will generalize satisfactorily to the many body problem. 

GREEN'S FUNCTION MONTE CARLO APPLIED TO THE BLOCH EQUATION 

As we shall see, the density matrix is the solution of a partial differential equation- 
the Bloch equation. Through the use of suitable Green’s functions the Bloch equation 
may be written as an integral equation. A random walk is then constructed whose 
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expected density is the solution of the integral equation and is therefore the density 
matrix [6]. 

In the coordinate representation, the density matrix may be defined as 

The quantities R and R, are multidimensional vectors representing the configuration 
of the system, /I equals &J-l and the yk , k = 0, 1,2..., are complete eigenfunctions 
for Boltzmann statistics with eigenvalues Ek . Any quantity of physical interest in a 
system at equilibrium can be determined from the density matrix. For example in an 
N body Bose system contained in a volume V, the radial distribution function, 
g(r, T), can be calculated from the diagonal part of the density matrix, 

where II and m represent some particle pair and P indicates a permutation of the 
particles. 

That the density matrix, pe(R, R, ; /3) satisfies the Bloch equation may be shown by 
differentiating pB with respect to /3; 

- -$ pi@, R, ; p> = c ‘.J’~Ob) e-8”k&%(R) (W 
k 

= &4R, R, ; is) (3b) 

= L-V2 + J”(R)1 p& R, ; PI. (3c) 

Units of ti2/2~ = 1 are implied in Eqs. (3); the Laplacian is in the full coordinate 
space and V(R) is the full many-body potential. The Bloch equation has the form of a 
diffusion equation if /I is identified with “time”. The density matrix satisfies the further 
condition that when /3 = 0 

pi& R, ; 0) = ; Y,*(R,,) YdR) = S(R - R,); (4) 

and thus it is seen that pe(R, R, ; /3) is a Green’s function. pe(R, R, ; /3) describes the 
diffusion of the system from the configuration represented by R, to that represented 
by R in a “time” /I. The density matrix may be computed from Wiener path integrals 
as well as by a Monte Carlo procedure. 

When hard sphere forces are present, the Green’s function has the property that 

,dR, R, ; PI = 0 
when Iri-rjl <fZ foranyifj 

I 1 roi - Ygj [ 6 a for any i # j, (5) 
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where a is the hard sphere diameter. An integral relationship involving pe(R, R, ; /3) 
can be derived, 

PBR Ro ; 8) = J" PB(J& R'; P - 6') PB@', Ro ; P'> dR', (6) 

which holds for any 0 < /I’ < /I. This equation is the basis for using truncated paths 
in a Wiener integral. Equation (6) may be verified by inspection: the operator 
t-v’ + W> + WP)l annihilates the factor pB(R, R’; p - /3’) in the integral and 
hence the right hand side. Furthermore if one takes the limit p’ ---f 0, the integral 
becomes simply pe(R, R’; p) in view of the boundary condition (4) In particular, for 
/3 = 0, the integral in (6) is 6(R - R,). 

The density matrix in the presence of hard sphere forces is not known and therefore 
cannot be sampled directly in a Monte Carlo calculation. It is possible, though, to 
sample pB(R, R, ; P) recursively. This is achieved by dividing the domain D of R 
in which pB(R, R, ; fi) > 0 into two parts, a subdomain D, and the rest of D. Let a 
partial Green’s function, p,,(R, R,; p) be defined which is zero for R on or outside 
the boundary of D, ; i.e. 

[--v” + V(R) + ~$1 po(R, R, ; /3) = 0 (74 

,dR, R, ; 0) = W - R,) & E Do (7b) 

po(R, R, ; if4 = 0 R or R, $ D, . (7c) 

With these boundary conditions, both po(R, R, ; /3) and pe(R, R, ; /3) are symmetric 
upon interchange of R and R, , and Equations (7a) and (3~) may be rewritten as 

[ --VI2 + VW) + +,I po(R’, R, ; 8’) = 0 @a> 

and 

[ -v2 ‘- v(R) - Y’ “] pB(R, R’ ; ,8 - fl’) = 0. W-9 

If Eq. (8a) is multiplied by pB(R, R’; /3 - p’) and Eq. (8b) is multiplied by po(R’, R,; /?‘), 
they may be subtracted and integrations performed with respect to R’ over the domain 
D, and with respect to p’ from 0 to 6. With the help of Green’s theorem and the bound- 
ary conditions on pB and pO, the following integral equation is derived 

PB(R RI; 8) 

= po@, Ro ; P) + joB jaD, PB@, R'; P - P')[--VhpdR', R, ; p')] @'dR', (9) 

where 0; indicates the outer normal derivative on the boundary of D, with respect 
to R’. The relation in Eq. (9) is used to generate the f&l Green’s function, pe(R, R, ; /3), 
by Monte Carlo from a knowledge of fo(R, R, ; p). 
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The actual computation involves the sampling of a sequence of points and times; 
CR, , PA 0% > Bz)m in the domain of pB(R, R, ; rs>. Initially, a subdomain D, is 
constructed about R, in which the Green’s function is known. Points R1 on the bound- 
ary of D, and a time interval /3, are sampled using -V,p,(R, , R, ; /3i) as the density 
function. In a similar manner, D, is constructed about R, and -VV,p,,(R,+, , R, ; 

FIG. I. A diagram of an idealized sequence of points and times, (Rn , ,$J, sampled in the random 
walk constructed by a Green’s Function Monte Carlo calculation. A subdomain D(R,) is built 
about each R, and a next R,+, selected on the boundary of the subdomain. 

Pn+l - /$J used to sample R,+l and /3n+1 . An idealized geometry for this process is 
shown in Figure 1. Let us define Q(R’, R, ; p’) to be the density of arrivals at (R’, /I’) 
at any step. Q(R’, R, ; p’) satisfies the equation 

QW, Ro ; 6’) 

_ 6(R’ _ R,) 6(/i?‘) + 1”’ s-,D [-V;pJR’, R”; b’ - p”)] Q(R”, R, ; p”) dR” ~$3”. 
0 0 (104 

This equation can also be written as 

QW, Ro ; P’> 

== SW - R,) S@‘) + s”’ s,, Q(R’, R”; /3’ - /I”)[-V;p,(R”, R, ; p”)] dR” d/3”. 
0 0 

(lob) 
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The quantity that is determined by the random walk is p(R, R, ; p) which may be 
defined as 

AR, Ro ; ,Q = 1” j po(R, R’; B - P’> Q(R’, Ro ; B’) dR’ d/3’. 
0 47 

(11) 

This quantity can be shown to be identical with the density matrix, ps(R, R, ; p). By 
multiplying Equation (lob) by po(R, R’; p - p’) and then integrating R’ over the 
domain Do and 13’ from 0 to /3, an integral equation for p(R, R, ; /3) results which is 
the same as Eq. (9). Since the solution to Eq. (9) is unique, p(R, R, ; fi) and p8(R, R,; fl) 
are identical and the KLV Monte Carlo technique successfully describes “time” 
dependent diffusion. 

In the discussion up to now, we have ignored the question of the symmetry of the 
wave functions and hence the symmetry of the density matrix with respect to particle 
interchange. Let us suppose that p(R, R, ; /3) is obtained using wave functions for 
distinguishable particles. Then we can construct pe for a Bose system by setting 

PL@> Ro ; P> = c ,@R, Ro ; P) (12) 
P 

where P is a particle permutation and the sum is over all possible such permutations. 
In any physical problem we must be sure that the density matrix constructed has the 

required symmetry. That means, for Bose systems, that expectations with respect 
to p are computed by constructing random walks that start at R and return to PR; 
one then averages over R and sums over P. The necessity for the permutation sum is a 
serious complication since in a many-body calculation there are very many permuta- 
tions and their effect changes drastically with temperature. Also, it is known [7] that 
for hard sphere systems, the first permutations that become important as the tempera- 
ture is lowered are cyclic permutations of three particles (rather than pair permuta- 
tions). Thus the sum over permutations must be conducted in an intelligent way. This 
will be discussed in the next section. 

The random walk simulates the diffusion of the system from one configuration R, 
to the permutation PRO. The decision as to which permutation will be the end point 
can be made prior to initiating the random walk or the decision can be made as the 
random walk evolves. Regardless of which method is used, the random walk proceeds 
from each point to a successor on the boundary of the subdomain. The overall 
Green’s function is the sum of the partial Green’s functions for every subdomain 
which occurs in the random walk and the function 

p(PRo 3 Ro ; b-9 = c poU=Ro , Rn ; B - A) (13) 
n 

is an unbiased Monte Carlo estimator for pB(PRo , R, ; j?). 
To have the correct high temperature behavior as /3’ + j3, the Green’s function 

within the subdomain, po(R, R’; p - fi’), must be proportional to (/I - /3’)--(3N/2) 
exp[-(R - R’)2/4(/3 - /3’)]. Wh enever (p - 8’) becomes small and R is near R’, 
singularities arise in po(R, R’; /3 - p’). Since po(R, R’; p - 6’) is integrable but not 
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square integrable with respect to /3, the Monte Carlo calculation which samples pO is an 
infinite variance Monte Carlo calculation; i.e., the overall Green’s function is an 
average of very large and very small contributions from P&R, R’; ,8 - /?‘). This is 
discussed further in an Appendix. Fortunately, the singular calculation may be 
transformed into a Gel1 behaved one by introducing importance sampling into the 
Monte Carlo procedure. 

THEORY OF IMPORTANCE SAMPLING APPLIED TO THE BLOCH EQUATION 

The Monte Carlo scheme we have described generates Green’s function by sampling 
points in configuration space drawn from ps(R, R, ; /3). Clearly, the probability that 
the random walk will actually reach PRO at fi is zero. A somewhat more practical 
scheme is to use the estimator expressed by Eq. (13); that is, the sum over the steps 
of the walk of the probabilities that the random walk observed at some (R’, 6’) will 
reach PR, at time j3. Use of the estimator will be totally ineffectual unless the walk 
populates reasonably densely a neighborhood of (PR, , /3). This will happen with 
very low probability, for example, in estimating exchange effects. Finally, as is shown 
in Appendix A, even when such a neighborhood is well sampled the estimator in 
in Eq. (13) has infinite variance and will exhibit extremely slow Monte Carlo conver- 
gence. However, importance sampling offers the possibility of altering the evolution 
of the “natural” diffusion process so as to choose suitably short paths which avoid 
hard sphere overlap or the occurance of strongly repulsive regions of configuration 
space and which permit the estimation of pB at the required final position PR, and 
“time” j3. Such alteration of the diffusion process will have as a practical consequence 
the substantial reduction in Monte Carlo variance. That is, the infinite variance 
estimator will be replaced by a bounded score, and neighborhoods of PR, and /3 will be 
well populated by the walk. 

Importance sampling improves the Monte Carlo calculation through the introduc- 
tion and systematic use of estimates of the probability that the random walk observed 
at some (R’, p’) will terminate at PR, . This probability is pe(PR, , R’; j3 - /3’) 
and an approximation to it is used to bias the random walk to produce a larger 
than a priori chance that the random walk will reach a neighborhood of PR, . The 
use of an importance function which approximates pe(PR, , R, ; p) increases 
the computational efficiency and reduces the variance in the final result. 

Designating the importance function by p#‘R,, , R, ; j3) the integral equations, 
Eqs. (9-12), can be written in terms of pr . A new quantity, &(R’, R, ; /3’), may be 
defined 

&R’, R, ; B’> = Q@‘, R, ; P’> PIW,, 9 R’; fl - fl’> 
prU% 3 R, ; PI ’ (14) 

and the integral equation for pe(PR, , R, ; fl) in terms of &(R’, R, ; j?) becomes 
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p~(f’Ro , Ro ; B> 

The Monte Carlo process now selects the initial point R, and the final point PR,, 
from pl(PRo , R, ; /3). In the random walk for &, the kernel -VV:p,(R’, R”; ,8’ - /?“) 
is replaced by 

-VApo(R’, R”; p’ - /I”) pI(PRo , R’; /3 - fl’)/pI(PRo , R”; /3 - /3”) (16a) 

and the & equation is 

x [-V;p,(R’, R”; 8 - rs”)] &(R”, R, ; ,@‘) dR” d/5!“. (16b) 

A score, po(PRo , R, ; ,W~I(PR, , R, ; P> . is recorded only when the Q walk terminates 
and it is weighted with the reciprocal of the a priori probability that the walk did 
terminate at that particular step. 

It is necessary that the importance function have the correct high temperature 
behavior as /3 --f /3’ so pr(R, R’; B - P’) must be proportional to (/3 - /3’)-3N/2 
exp(-(R - R’)74@ - fi’)). S’ mce the score that is recorded is po(PRo , R, ; p)/ 
n(PRo , Ro ; /% th e singularities in the Monte Carlo calculation discussed in the 
Appendix have been removed and the estimator is bounded. As the importance 
function more closely resembles pB(PRo , R, ; /3), the estimation of the score is 
carried out with a variance which approaches zero. Rewriting Eq. (9) for PB as follows 

1 = PoU’Ro > Rn ; P - Pn) 
fe(PRo > Rn ; fl - &.) +- j-1 s,, [--V:fo(R’, R, ; B’ - ,&>I ,, 

p&‘Ro > R’ ; B - B’> 
’ ,oB(PRo , R, ; ,8 - ,&) dR’ dp” (17) 

the integral on the right is the probability that the & walk, biased by pB , continues. 
If this integral is designated PO , then the score po(PRo , R, ; fl - /3,)/pB(PRo, R, ; 
#i - j&J = 1 - P, . When scoring is carried out with probability (1 - PO) (the 
a priori probability that the walk should terminate at this step) and weighted by 
(1 - P&l, the score is exactly 1. Since Pr is in general not the same as Pe , variation 
in the score must be expected. Even though PI is not equal to PB , it is clear that scoring 
should be considered only when the contribution from all future steps is small 
(M’Ro 3 Rn ; B - P3 is small). The total Green’s function that is estimated by the 
random walks is 

PB(%, RI; S> = 
( 

C 
POW, 2 Rn ; B - I%) pAPRo , R, ; PI 

(1 - PO) pdPRo , R, ; /? - Bn, > 
(18) 

n 

where the sum extends over those steps at which a scoring occurred. 
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A score is the weight associated with the point R, in configuration space. When a 
quantity such as g(r, 2) is inferred from an ensemble of points, statistical fluctuations 
will occur in the values obtained. In principle, though, importance sampling could be 
used to obtain a zero variance estimate of g(r, T) for some r, but it is doubtful whether 
this is practical to carry out. 

The importance function pI is the key to the efficient treatment of permutations 
as well. There are two possibilities: one is that pr has the proper symmetry under 
permutation. If so, the random walk started at R, and biased with pr(R, R, ; p) 
will move preferentially to the neighborhood of PR, according to the contribution of 
the permutation P to the density at inverse temperature /3 and for configuration R, . 

Alternatively-and this is the procedure we foresee as more practical-suppose 
that pI is correct only for Boltzmann statistics and that the sum indicated in (12) must 
be carried out explicitly. That sum can itself be done by a Monte Carlo technique 
and we propose the following scheme. Define a joint probability density function for 
configurations R, and permutations P by 

WG 9 P; P> = H-l~~(R, , PR, ; P> 

H = c /” p,(R, PR; 8) cm. 
P . 

(19) 

(20) 

For any given pI , h may be sampled by a suitable generalization of the Metropolis 
method. Such a procedure has recently been used by Ceperley, Chester, and Kalos [8]. 

Now suppose that a population of configurations and permutations {R, , P} has 
been generated according to (19) and that R, and PR, are used as initial and final 
points in the random walk in Equation (16b). Associated with such a walk is the weight 

P-1) 

Note that this is like (18) except that the factor pl(PR, , R, ; /l) has been omitted. 
IV&,), the expected density (weighted with w) for all walks started at R, is given by 
Eq. (21) multiplied by the density given in (19) which served as the source and summed 
over permutations, that is 

= H-l 1 PV’R, , R, ; B) = H-‘pdPR, , R,, ; ,Q 
P 

(23) 

This is the Bose density matrix, according to Eq. (12). 
Finally, if we average, weighted with w, some functionf(R,) over all {R, , P], the 

expectation is 

(24) 
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The sequence of operations consists in sampling (R, , P} using (19), assigning a 
weight according to (21). This sequence permits the Monte Carlo calculation of 
expectations with respect to the diagonal part of the Bose density matrix. At the same 
time one can weight results obtained with P with the additional factor (- l)p to obtain 
results for Fermi statistics but we expect this simple strategem to give poor results at 
large /3 where even and odd permutations give contributions of similar absolute value. 

There are several desirable properties of an appropriate importance function which 
guide us in its selection. The importance function must have the correct high tempera- 
ture behavior in order that the last stages of the random walk (/3’ -+ j3) are correct. At 
low reduced temperatures, pI should contain as much as can be conveniently arranged 
of the right physics of the system; and as ,8 -+ co, it should be symmetric with respect 
to permutations since the ground state density function is symmetric. The importance 
function may or may not be symmetrized for Bose statistics depending upon whether 
we propose to use it to guide the choice of permutations. In the practical selection of an 
importance function, the high temperature behavior must be correct but compromises 
are often necessary on the other desirable characteristics. 

APPLICATION OF THE THEORY TO THE TWO-BODY PROBLEM 

The simplest interesting system that can be considered is two indistinguishable 
spheres which interact by a hard sphere potential. The problem is equivalent to a point 
diffusing on the outside of an absorbing sphere as shown in Figure 2. For every R, 

origin of half rpoce system 
/ 

\ 
\ -absorbmg sphere 

\ 
/ \ 

FIG. 2. A diagram showing a “marker” diffusing on the outside of an absorbing sphere. The 
marker started at R,, when p = 0 and now, at the nth step in the random walk, is at R,, . A possible 
next step is to R,,+* on the boundary of the half space domain containing R, . 
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in the space, there corresponds a point reflected through the origin, P,R, , which 
indicates the configuration of the system when the particles are interchanged; thus, 
there are two possible permutations. The density matrix, pB(R, R, ; /3), describes the 
diffusion of a marker from R, to R in “time” /3. 

From the density matrix, the radial distribution function may be calculated as 
shown in Equation (2). For two bodies, both the numerator and the denominator 
contain a contribution from the identity permutation and the pair exchange permuta- 
tion, so the radial distribution function may be written as the sum of two terms 

The quantity gdir(r, j3) derives from random walks which begin and end at R, , 

gdlrk, p) = 
V .f p&G , R, ; /$ 6(r, - r, - r) dR, 

CP j- peW, R 8) dR ’ 
(264 

Note that the factor (1 - l/N) in Eq. (2) becomes 1 for two bodies in relative coordi- 
nates. Evaluation of the denominator in (2) over a large volume yields asymptotically 
V/(~T~,!I)~~~ for two bodies since the value of the direct permutation of pB(PR, R; j3) 
approaches the constant value (47~&~/~ as R + CO and the exchange contribution 
quickly dies off as R + co. The expression for gdrr becomes 

gdirtr, B) = (4+3)3’2~~(R, R PI- WI 

In a similar manner, we find 

&xch(r, fl> = (4d3” d--R, R p). (27) 

In the high temperature limit, gdir(r, p) goes to the classical pair correlation function 
and gexch(r, fi) approaches zero. 

To evaluate the radial distribution functions in the two body system, the KLV 
method may be applied to the diffusion process. The implementation of the method 
involves dividing space into two regions; one region is the subdomain D, in which 
the partial Green’s function, p,, , is defined. The subdomain used here is a half space 
whose boundary is an absorbing plane tangent to the sphere. This is not the only 
possible choice for the subdomain, but it does have desirable characteristics. For 
example, the mean time to absorption is much greater for the half-space than for a 
spherical domain. The total elapsed time in a random walk is the sum of the times to 
leakage for each subdomain so fewer steps are needed with planar boundaries. 

The Green’s function in the half-space with an absorbing plane boundary is 

PO@, Ro ; f!) = exp’~~~~~3~)2’4p1 (1 - exp[((R - R,)2 - (R - R1)2)/4p]} (28) 

where R, R, are contained in the half-space and RI is the image of R, reflected through 

581/343-s 
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the absorbing plane. This approximation for the two body problem was used by 
Uhlenbeck and Beth [9] in evaluating the direct radial distribution function at high 
temperatures. Upon substituting Eq. (28) into the expression for gdir , Eq. (26), 
the Uhlenbeck and Beth expression for gdrr becomes 

g&r, p) = 1 - exp [ - $ ($ - I)‘] 

where a is the hard sphere diameter. 
Once po(R, R, ; /3) is known for the subdomain, a random walk is constructed in 

which the kernel (-&(R’, R, ; /3’ - p,J/&z) serves as the source for future 
diffusion. The random walk is initiated by setting R, = R at p = 0 and defining a 
half space containing R, whose absorbing plane boundary is tangent to the sphere 
and perpendicular to R, . The point (RI, PI) is selected from the distribution 
(-~Po@I 3 R, ; ANa n on the plane. The random walk continues from each R, as > 
follows: a half space containing R, is constructed and a &+r and B,+1 on the plane 
boundary are sampled from -+,(R,+l , R, ; Pn+l - P,)/&. This is sketched in 
Fig. 2. The process of moving to the plane and the construction of a new half space 
is iterated until pn is greater than /3. There is no other mechanism for termination in 
this direct Monte Carlo procedure. An outline of this procedure, including the 
estimation of ~a by Eq. (13), is provided in Appendix B. 

A direct sampling of p,,(R, R, ; /3) in Equation (28) with no importance sampling 
leads to a singular Monte Carlo computation. As R, approaches PR, , the values of 
Pn will be chosen uniformly in the vicinity of /3 and can be arbitrarily close to p. This 
will lead to enormous contributions to the final score and g(R) will be calculated 
with infinite variance (shown in detail for the N particle case in Appendix A). One 
benefit of importance sampling here is to transform the singular Monte Carlo calcula- 
tion into a well-behaved one. 

IMPORTANCE SAMPLING IN THE TWO-BODY PROBLEM 

As has been described, an importance function which approximates the density 
function is needed. The first such function used in the importance sampling of the two 
body problem is 

PI@, R, ; PI = exp[-(R - %)2/4P1~1 
(4~/3)3/3 

- exp[-(R2 - a2)(Ro2 - a2)/4a2/3]}. (30) 

The particular functional form of pI(R, R, ; j3) was chosen for several reasons. As 
j3 -+ 0, the expression in Equation (30) has the proper high temperature behavior. Also, 
pI(R, R, , p) approximates the Uhlenbeck-Beth function in Eq. (28) as R, R, --f a. 
This guarantees that the importance function vanishes on the surface of the sphere. 
Lastly, the dependence of p,(R, R, ; /I) on the spatial variables allows the integrals 
over the surface of the plane, aD,, to be carried out. No additional knowledge gained 
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from other calculations of the pair correlation function was built into the importance 
function. In particular, no consideration was given to the low temperature limit 
behavior of pl. 

Upon incorporating the importance function given in Eq. (30) into the integral 
equations, the marginal distribution function in p becomes 

= (44/h - PnV pr($C, 9 Rn ; Pr - Bn) exp I 4(X, - ~rJZ + (Yf - Y?d2) 

4@, - &I) 1 
-Zf2 G2 

s 
a, ir x exp Vf - 8) - 4@ - AL> [ I 

X 1 
‘1 & 1 @f - /QP2 (B - P?J3’2 

KBf - PI/@ - Bn>> xJ2 + (Yf t (@I - kv@ - AN yTJ2 

4% - B@r/4” + @, - fW(b’ - Pn)) 
Rf2 RQ2 - 

4Vf - P> - 4@ - Pn) I 1 - 
(A - fw2 (B - AJ3’2 ((J$)” + p; ) 12 

(31) 

where R, is synonymous with PR, and j$ indicates the final time. The integrand in 
Eq. (31) is sampled for a /3 [lo] and the probability of scoring is determined, 

P,(PR, , R, ; j3f - fin) = probability of scoring = df% 3 Rn ; Pr - AJ 
prW, , Rz ; Pf - Bn) ’ (32) 

If the half-space contains PR, , then it is possible to terminate the random walk and 
record a score. If the half-space does not contain PR, or a decision not to score is 
made based upon the value of P, , a next R is sampled from the kernel 

--V,p,R R, ; P - fin> pr(PR, , R; & - PI 
~r@‘Ro 9 Rn ; ,& - ,%>(l - J’s) (33) 

where (1 - Ps) is employed as a weight or as a branching ratio. An outline of the 
Monte Carlo procedure with importance sampling is presented in Appendix B. The 
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two Monte Carlo methods, with and without important sampling may be contrasted. 
In the latter case, the random walk terminates only when pll. is greater than /31 and 
the estimator for g(r, p) has infinite variance. The introduction of importance sampling 
alters the evolution of the diffusion process by choosing suitably short paths which 
avoid the absorbing sphere and enforces ,& < ,8?. This permits the estimation of 
PBW, , R, ; PJ with a b ounded estimator and hence finite variance. Termination 
of the walk occurs at random with a probability which is close to one when it is in the 
neighborhood of PR, and the expected contribution from future steps is small. 

The total Green’s function which is estimated by the random walk is 

PW, 2 R, ; I%> = c P~U’R, > Rn ; /% - Pn> PIU’R, 3 R, ; PA 
11 PO% > Rn ; ,Qf - Pn> PIU=R, , Rn ; ,‘% - Pn> (34) 

where the sum extends only over the steps at which a scoring occurred. The sum in 
Eq. (34) is an unbiased estimator for the actual Green’s function, pe(PR, , R, ; PI). 

RESULTS AND DISCUSSION 

The results of the Monte Carlo calculation on the two body Bloch Equation for 
the direct radial distribution function, gdir , and the exchange radial distribution 
function, &x,?h , are given in Tables I and II, respectively. The quoted values represent 
10,000 random walks each; the quoted error is a measure of the range of scores 
recorded within the 10,000 walks. Also given in the Tables are exact numerical 
values of gdir and ge&, calculated by Larsen [ 111. It is obvious that the method works 
best at high temperatures and at large distances. Indeed at X,/a = 1.4 (X, is the thermal 
wave length and a is the hard sphere diameter), the Green’s function Monte Carlo 
method is sufficiently sensitive so that it may be used to detect the difference of gdir 
from 1 as the two particles recede from one another. At lower temperatures, the Monte 
Carlo results are still good but the errors have increased. As explained earlier, the 
importance function, Eq. (30) was not optimized for low temperature behavior and 
its behavior is surely wrong at such temperatures. It is interesting that reasonable 
results can be obtained at reduced temperatures which correspond to approximately. 
2” K. On the other hand, the inferior qualities of the importance function adversely 
affect the calculation of the exchange radial distribution function at high temperatures. 
Since it must guide the diffusion around the sphere, the inappropriate behavior leads 
to a poor choice of path. Of course, if no importance sampling were used, the proba- 
bility of circumventing the sphere would be very small. Even an inferior choice of pI 
is better than none. 

In Table III, the Green’s function Monte Carlo values for the second virial coeffi- 
cients are presented in comparison with Boyd, Larsen and Kilpatrick’s numerical 
values [12] and some asymptotic expansions [12]. The direct virial coefficient may be 
determined from the direct radial distribution function, 

Bdir ___ = 
B -3 Jrn (g dir - 1) R2 dR (35) 

ClZS " 
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TABLE I 

Direct Radial Distribution Function for Hard Spheres 

Monte Carlo 
estimateC 

Numerical 
resultd R” 

Monte Carlo 
estimateC 

Numerical 
resuW 

1.125 .08668 & .17 x 10-S .086503 

1.25 .27278 & .40 x 1O-3 .272861 

1.375 .48164 5 .65 x 1O-3 .481210 

1.50 .66520 & .79 x IOV .665109 

1.625 .80437 f .86 x 1O-3 .803755 

1.75 .89640 & .66 x 1O-3 .895494 

2.0 .97785 f .20 x 1O-3 .977751 

2.25 .996802 & .33 x 1O-4 .996774 

2.50 .999676 f .37 x lO-5 .999682 

2.75 .999979 3 .27 x 1O-6 .999979 

1.25 .04948 & .00063 .050402 

1.75 .2342 i .0022 .236874 

2.25 .4060 + .0030 .408308 

2.75 .5456 I .0043 .547489 

3.25 .6580 2~ .0038 .658482 

3.75 .7488 + .0034 .746257 

4.25 .8174 & .0028 .81467 

4.75 .8678 I .0021 .867636 

5.25 .9061 i .0016 .907420 

5.75 .9381 i JO11 .936739 

b R is dimensionless. When R = 1, the hard spheres are touching. 
c These values correspond to 10,000 samples at each R. The error shown is one standard deviation. 
d S. Y. Larsen [ll]. 

where Bclas = 2na3/3 and R = r/a. The integration was performed by Monte Carlo 
with the choice of R guided by the function 

P,,,(R) = exp[-(R - 1)‘/4/3,] R2 dR. 

Again the Monte Carlo results are most impressive at high temperatures and can 
accurately reproduce the deviation of the direct virial coefficient from the classical 
value. 

In a similar manner, the exchange virial coefficient may be determined from the 
exchange radial distribution function; 

B exch 
____ = 
B clas 

-3 Iorn gexchR2 dR. 

The choice of R during the Monte Carlo integration was guided by the function 

P,(R) = (R - 1) ,-(RW2/4asf. 

The variable LY was chosen such that P,(R) would have its maximum at the value of R 
for which gexch(R) has its maximum. Data generated by the GFMC calculation of 
geX& was used to determine the appropriate values of 01. 
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TABLE II 

Exchange Pair Correlation Function for Hard Spheres 

AT/a = 2.93761 AT/a = 10 

R” 
Monte Carlo 

estimateb 
Numerical 

resultC R” 
Monte Carlo Numerical 

estimate* result” 

1.125 .785 x 1O-s zk .021 x lo-$ 

1.25 2.237 x 1O-s + .064 x 1O-3 

1.50 4.56 x 1O-3 i .ll x 1O-s 

1.625 4.66 x 1O-3 rt .ll x 10m3 

1.75 4.63 x 1O-3 & .16 x 1O-3 

2.0 3.419 x lo-* f .080 x 1O-3 

2.25 2.044 x 10m3 f .067 x 1O-3 

2.5 1.037 x 1O-3 * ,023 x 1O-s 

2.75 .477 x 10-S & .013 x 10-a 

2.875 .3114 x 1O-3 j, .0065 x 1O-5 

.778 x 1O-3 1.25 

2.276 x 1O-J 1.75 

4.481 x 1O-3 2.25 

4.749 x 10-s 2.75 

4.545 x 10-a 3.25 

3.366 x 1O-3 3.75 

2.027 x lo+’ 4.25 

1.041 x 10-a 4.75 

.467 x 1O-s 5.25 

,298 x 1O-s 5.75 

.03068 i .00050 .030112 

.1277 & .0017 .128927 

.1911 It .0025 .193442 

.2183 + .0028 .218570 

.2184 rf .0027 .215374 

.2004 I-t .0023 .194707 

.1672 zt .0018 .165175 

.1360 It .0013 .133021 

.10285 f .00092 .102371 

.07598 i .00064 .075591 

a R is dimensionless and equals r/a. When R = 1, the hard spheres are touching. 
D These values correspond to 10,000 samples at each R. The error shown is one standard deviation. 
C S. Y. Larsen [ll]. 

In Table III, the absolute value of the ratio of the exchange virial coefficient to the 
classical virial coefficient is reported. In contrast to the direct virial coefficient, 
B exch is determined most precisely at the lowest temperatures. At temperatures higher 
than AT/a = 2.0, a value for the exchange virial coefficient cannot be reliably extracted 
by this Monte Carlo calculation. This is of course due to the poor guidance given by 
the importance function in the region of high temperatures for the exchange of the 
two hard spheres. 

IMPROVED IMPORTANCE SAMPLING 

While the results that were achieved with the importance function introduced 
previously are impressive, especially for the direct radial distribution function and 
virial coefficient, the difficulty in determining high temperature exchange results is 
unsatisfactory. Therefore an alternate importance function was devised which would be 
more realistic in the exchange region. Following a suggestion by Lieb [13] the function 

Pi = (&)“’ exp[--S2(r, r’)/4/l] 11 - exp [-Ilk - $cr’ - a) ]I 
c39j 

was tried as an importance function. In this equation S(r, r’) is the shortest distance 
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between Y and r’ which does not intersect the absorbing sphere. For the case where Y 
and r’ are within sight of each other, the shortest distance is just 1 Y - r’ j ; but when one 
of the points is in the shadow of the sphere, S(r, r’) is composed of two tangent lines 
and an arc on the sphere. The motivation for choosing this importance function is that 
the shortest path from Y to r’ will be the most likely in the random walk, especially at 
high temperatures. The new importance function is identical to the half space Green’s 
function, Eq. (28), for r and r’ within sight of each other. The improvement in using 
Eq. (39) is expected to be most dramatic in the calculation of exchange quantities. 

Rather than rederive all the sampling techniques which would be needed to use 
the new pj , the Monte Carlo was modified in a way which retained the techniques 
developed for the original pz and then corrected the sampling using p; . A new 
(R, , /3J are selected from a distribution based on pz ; the multiplicity [lo] associated 
with this point is adjusted to reflect that we should be sampling p; 

M, = M PZ& 3 Rn ; h - Bn) P;@, > R-, ; ,b - /C-d 

P;@, 3 Rn ; Br - /L) PZUG , Rn-, ; /A - Pn-d ’ 
(40) 

where M’ is the adjusted multiplicity, M is the multiplicity based on pz and (R,..+ #InJ 
is the previous point in the random walk. Upon making this change in the GFMC 
code, an improvement in the calculation of the exchange correlation function is 
definitely observed. In Table IV a comparison of the &ch which results when the 
importance function in Equations (30) and (39) are used is given for a range of 
temperatures. At each temperature the final internuclear separation, R, is that which 
corresponds to the,maximum in &#h . The values labelled efficiency, E, are designed 
to measure quantitatively the improvement of one Monte Carlo calculation over 
another. For the same number of random walks, 10,000 in this case, the efficiency is 
the variance estimated in the Monte Carlo calculation multiplied by the elapsed 
time of the computation. Thus the efficiency measures the composite effect of improv- 
ing variance while possibly changing the computation time for each trial. As the 
temperature increases (“time” decreases), the ratio of the efficiencies increases; and 
the ratio can be made arbitrarily large at high enough temperatures. 

Through the use of an improved importance function, accurate and precise values 
of both the exchange and direct correlation are possible. With the function in Eq. (39), 
there is no restriction on where the exchange radial distribution function may be 
easily determined. 

The philosophy above was to find an analytical importance function which con- 
tained as much as the actual physics of the problem as could be contrived and thereby 
improving the performance of the Monte Carlo code. This is not the only way to 
approach the development of useful importance functions. Each time a random walk 
is constructed between R and R’ information is generated on the actual density 
function pB(R, R’; d/3). If space and time are discretized into cells, the outcome of a 
series of random walks can yield information about the importance function in tabular 
form. This can be visualized as follows: suppose Nb walks start in the cell Y,, and Nf 
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walks arrive at Y, , the volume which contains (R, , fir). Our estimate of the actual 
density function ps( Y, +- Y,) is 

PB(Yf +- YJ = $a(Yf - Yb) 
b 

(41) 

and the ratio of the actual density function to the importance function is N,/N, . The 
ratio Nf/iv, for each volume in space accessed in a random walk can easily be recorded 
and the information used as an improved importance function. The usage of the 
tabular data is similar in approach to the way the improved analytical importance 
function was introduced above. A point (R, , p,J is chosen from a probability distribu- 
tion function appropriate to the original importance function Eq. (30) and the multi- 
plicity associated with this point is corrected by multiplying it by the tabulated ratios 
in the volumes containing the point and the previous point (cf. Eq. (40)). The process 
can be a self-learning one in which the table is updated as more and more random walks 
are conducted using the table. Eventually a very accurate representation of the density 
matrix could be achieved as more data are generated. 

The one serious drawback to the generation and use of a numerical importance 
function as described is the dimensionality of the table necessary to contain it. For 
each pair of final point and time (R, , pf), there is a separate table containing the space 
and times the steps in a random walk will acess. This is necessary because the ratio, 
N,/N, , recorded pertains to the number of walks passing through cell Y, which reach 
cell Y, (the cell which contains R,) in time /?f - /3. In theory, it would be necessary 
to assemble a three dimensional table in (1 R j, 6, d/3) for all the combinations of 
(R, , pf)). In practice, though, random walks which wish to reach Rf in a time /$ < Pr 
can use the data generated for (R, , fir). 

As a demonstration of the feasibility of using a numerical importance function, a 
table of data was generated for R, = 1.875 and &./a = 6 from a series of lo5 random 
walks importance sampled in the original way, Eq. 30. Exchange radial distribution 
functions at several values of X,/a less than 6 and Rf = 1.876 were calculated and are 
reported in Table V; each value represents the result of 5000 random walks. Table V 
compares the performance of the GFMC code with the analytical improved impor- 
tance function, Eq. (39), the original importance function, Eq. (30) and the numerical 
function, At values of &/a near 6, the numerical function behaves as well as the 
improved analytical function in calculating g,,&R) as measured by the efficiency. 
At higher temperatures (smaller &/a), the data in the numerical function table is less 
complete and this is reflected in the increasing standard error in the geX& result as 
compared with the analytical calculation. In all cases, however, the GFMC calculation 
which employs the numerical importance function is better than the original calcula- 
tions. It can be anticipated that if the numerical data had been collected from a series 
of random walks which were biased by Eq. (39), even better improvements in effi- 
ciency would emerge upon subsequent use of the data. 

The dimensionality problem will prevent the use in exactly the mode used here for 
many-body problems. Any reasonable division into “cells” in a 3N dimensional 
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space will result in samples too sparse in any cell to be statistically reliable. But it 
should prove possible to use the data generated during the Monte Carlo in a global 
way to determine best parameters for some assumed importance function. 

CONCLUSION 

An extension of the Green’s function Monte Carlo method of Kales, Levesque 
and Verlet has been outlined for finite temperature, quantum many body systems. The 
method involves writing the Bloch equation for the system as an integral equation and 
sampling the Green’s function in a Monte Carlo calculation to solve the integral 
equation. The Green’s function of the system is the density matrix and knowledge of 
the density matrix allows the calculation of quantities of physical interest. The com- 
putation has borne out our assertion that the successful application of the GFMC 
method requires the introduction of importance sampling to eliminate the occurrence 
of infinite variances and to increase computational efficiency. Of considerable impor- 
tance in the many body quantum system is the correct handling of particle permuta- 
tions. Two general methods are proposed. One which requires sampling permutations 
should be feasible. Although we did not use it, it would clearly have worked success- 
fully in the two-body problem. 

Feasibility was investigated by applying the GFMC method to the case of two 
bodies interacting by a hard sphere potential. The straight forward Green’s function 
Monte Carlo calculation is seen to have infinite variance, and importance sampling is 
absolutely necessary. We implemented this into an algorithm, using deliberately an 
importance function whose description of the exchange term was seriously inaccurate. 
The results proved rather good in spite of this deficiency. The acceptibility of the 
result was judged by comparing radial distribution functions and virial coefficients 
generated by the GFMC calculation with accurate numerical results [l I 1. Of particular 
note is that the Monte Carlo calculation can accurately predict the deviation of the 
direct virial coefficient from the classical values at high temperatures. Very small 
departures of the direct radial distribution function from unity have been accurately 
calculated. 

Additional Monte Carlo calculations demonstrated that a better choice of the 
importance function significantly reduced the variance of the final result. With the 
improved importance function, accurate high temperature exchange results were 
determined. We also explored the use of a numerical importance function obtained by 
accumulating information in tabular form from a series of the same random walks 
that solve the Bloch Equation. This experiment successfully demonstrated the feasi- 
bility of fixing values or parameters of an importance function as an outcome of the 
Monte Carlo. 

The results reported here indicate, insofar as a two-body calculation can, that the 
Green’s function Monte Carlo method can be applied to the calculation of equilibrium 
properties of quantum systems. We plan next to develop the algorithm into a form 
suited for many-body problems and to apply the result to a small number of hard 
spheres. 
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APPENDIX A 

We prove here the assertion that the use of the Green’s Function random walk 
without importance sampling together with the use of Eq. (13) to estimate pB for the 
hard-sphere problem leads to infinite variance. The consequences of this result will be 
discussed briefly. The proof is given for the general (N-body) problem; its validity for 
the 3-dimensional case considered in detail in the body of the paper follows easily. 

A direct Green’s Function Monte Carlo calculation of the density matrix uses the 
integral equation 

P(R Ro ; B> = joB jD po R ( R'; B - B'> Q@‘, Ro ; P’) a @ (Al) 

to relate the density matrix p(R, R, ; p) to the set of points {R, , ,&} in a random 
walk sampled from the density Q(R’, R, ; p’). Then, a Monte Carlo estimator for 
pe is formed by summing all the contributions from po(R, R’; /3 - /3’) in the course 
of the random walk, 

p@‘Ro 2 Ro ; ,b> = c po(f’Ro , R, ; Bf - /‘L>. 

The variance of the mean of the density matrix in Eq. (A2) can be related to the vari- 
ance of the Green’s Function in the subdomain, p. , by 

var{p) = + var(p,} (A3) 

in which K is the number of histories averaged to estimate the mean of p(PR, , R, ; /$), 
The variance of the sum of subdomain Green’s Functions is 

varbol = <po2> - (P~>~ (A4) 

where the angular brackets denote the expectation value of po(R, R’; ,B - ,8’) for the 
subdomain evaluated with respect to the population of {R’, /3} given by the Q equation. 
The quantity (po) is finite since it is the original density function. We now show that 
(po2) is infinite. 

Let D, be the largest 3N-dimensional cube of any orientation that has PR, as its 
center and which does not permit any hard sphere overlap. Denote its side as 2r, . We 
need a lower bound for po(PR, , R; pf - ,8) for R contained within the cube; such a 
bound can be devised by using a multidimensional image expansion. Let L be a 
3N dimensional vector whose components are k2mkrl where mk = 0, 1, 2,...; then 

%k exp - [ 
(PRO - R - L)2 

4th - p) 1 . 

The sum on L, which is absolutely convergent, may be reordered to include successive- 



384 WHITLOCK AND KALOS 

ly larger terms in / L 1. The first two terms are L = 0 and ] L 1 = 2rz (C / m, j = 1) 
and together these give a lower bound for p,,(PR, , R; /?, - /3). That is, let 

X = R - PR, b46) 

be a set of Cartesian coordinates parallel to the edges of D, . Then 

where in each term of the sum exactly one mk = -&I. Thus for R E D, , i.e., ] X, ] < rl , 
Equation (A7) becomes 

’ (477(/3f -! /3))3N/2 MC--X2/4(6b - PII - 6~ex13[--r~/4@~ - PII>. 648) 

Now consider D, , the 3N-dimensional sphere of radius rl inscribed in D, . Within 
this domain and in the time interval pf - O/3 < 8 =C BY, the density, Q(PR,, , R; /3&) 
with which the points (R’, /Y) will populate the neighborhood of PR, is positive and 
bounded away from zero. Let Q, > 0 be a lower bound to that density; then the square 
of the estimator derived from Eq. (13) averaged over all space and /3 satisfies 

<~,2Po 3 Ro ; A,>) 

po2(PRo, R /‘% - PI dR 4 

> Qo LAB c4,$j3N 

(A9) 

I DS {exp[--X2/4/?] - exp[-r,2/4/3’]}2 dX d/3’. 

The integral indicated on the right-hand side of Eq. (A9) factors into three contribu- 
tions 

I = Qo iAE c411;~j3N (4 - 12 + 13) 4 (AlO) 
where 

I1 = Jr’ exp[ - X2/2p’] X3N-1 dX, 
0 

I2 = 2 exp[-r,2/4j3’] Jo” exp[--X2/4/3’] X3N-1 dX, 
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and 

I3 = exp[--r,2/2p’] J” X3N-1 dX 
0 

= !& exp[--rt/2/3’]. 

Since I3 is positive the inequality of Eq. (A9) is preserved if I3 is omitted. 
By introducing the change of variables V = X2/2/3’, the integrals I, and I, are 

transformed into 

I1 = (2m3N'2 
s 2 0 

v* e-Vy(3N/z,-1 dpJ 

and 

12 = (2P)3N12 exp [ - -&] S,“’ ,-V/zff(3N/2)-1 dv 

where V, = r12/2/3’. Now, rL2/2A/3 < V, < co; therefore 

I1 > 110/j'3N/2 E c2pr'" j-rz='2A6 e-VV3N/2-l dv 

0 
(A13a) 

and 

I2 < 1~~pj3N12 s (2py3Nl2 exp [ - -$] jam e-“PV@N/2)--1 dV. (A13b) 

I,, and Izo are positive and finite; and the fi’ integral deriving from 1, in Eq. (AIO) 
exists. On the other hand 

Qo joA ($+,2 4' > Qo p+ joA" @'>-3N'2 dP' 

which diverges. Since the other terms in Eq. (A9) are finite, (po2) is infinite. 
The result still applies if we use p. for domains larger than D, ; in particular, it 

applies for the half space bounded by a plane as in the example used in the body of 
this paper. That is, if D E D, , then Eq. (9) shows immediately that 

POW, 3 R PI - PI > poc(PRo 2 R Pr - PI 

when p. and pot vanish on the boundaries of D and D, respectively. 
It is possible to do a Monte Carlo calculation whose estimator has an infinite 

variance. An integral which is analagous to that in Eq. (A9) is ji dw where w is sampled 
from p(w) = (3N/2 + 1) w3N/2 and the recorded score is ,f(w) = [p(w)]-l. Such a 
Monte Carlo calculation is characterized by a limit distribution for the random 
variable [iV - (w)]/K-‘“~/~+~) where K is the number of samples and W is the sample 
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mean, The distribution of W becomes asymptotically narrower about the population 
mean, (w), but the width decreases much slower than the usual K-lj2. In addition 
the distribution is very broad-having no second moment-so large fluctuations in 
the mean are expected. In contrast, importance sampling permits the calculation of the 
same integral with an effective f(w) which is bounded and for which the ordinary 
Central Limit Theorem holds. Thus, it was considered imperative to use importance 
sampling in the Green’s Function Monte Carlo method outlined herein. 

APPENDIX B 

This appendix contains a concise representation of the sequence of steps needed 
to generate a single history in the Green’s Function Monte Carlo method with and 
without importance sampling. Averages over many histories yield an estimate of the 
density matrix which is used in Eq. (26) or (27) to give the radial distribution function. 

Green’s Function Monte Carlo without Importance Sampling 

1. SetR,=R 
PO = 0 
n = 0. 

2. Construct half space containing R, . 

3. Set pV%, R, ; PI = ,4%, R, ; ,fO. 
4. Sample point R,,, on the bounding plane and “time” Pnfl from density 

function 

_ %dRn+~ > Rn ; Pn+l - fin) 
an 

5. If A+1 > j3, terminate history. 
6. Set n = y1 + 1 and construct half space containing R, . 

7. Set pO% , R, ; P> = p(PR, , R, ; P) + pdI%, R, ; B - BJ. Go to 4. 

Green’s Function Monte Carlo with Importance Sampling 

1. SetR,=R 
Al = 0 
m=O 

score = 0. 
2. Construct half space containing R, . 
3. Evaluate probability of scoring: 
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4. Sample a p” from B,@‘), the first term of integrand of Eq. (31) of text, 
written concisely as 

5. Set branching multiplicity to be 

~4 = I,"- W') 4' [l - a] 1 -lp,co, + E D51. 

6. If M = 0, go to 9. (Note: this branch has terminated.) 

7. Iterate step 8 A4 times. 

8. Set m = m + 1 
Pm = S”. 

R, is sampled from kernel of Eq. (31). 
Each point (R, , &) is a branch of the random walk. 

9. Set m = m - 1. 

10. If m = 0, go to 15. 

11. Construct half space containing R, . 

12. Calculate 

ps(pm) = POWO~ R, ; P - f%J 
prV=Ro , Rn ; B - Pm) ’ 

13. If P&J < 4 [15], go to 4. 

14. 

Go to 9. 

15. All branches of the random walk have completed; terminate history. 

Set APRo F R. ; B) = fo(PRo , R. ; P> + (l _ \,(o)) x score. 
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